KOTIUROVA I., TOKKO N. TYPICAL ERRORS ANALYSIS BY RUSSIAN-SPEAKING STUDENTS IN GERMAN TEXTS IN THE LEARNER CORPUS PACT. LIFELONG EDUCATION: The 21st Century.
2022. № 4 (40). DOI: 10.15393/j5.art.2022.8009


Issue 4 (40)

Innovative approaches to lifelong learning

pdf-version

TYPICAL ERRORS ANALYSIS BY RUSSIAN-SPEAKING STUDENTS IN GERMAN TEXTS IN THE LEARNER CORPUS PACT

KOTIUROVA Irina A.
PhD in Philology, Associate Professor, Head of the Department of German and French at the Institute of Foreign Languages
Petrozavodsk State University
(Petrozavodsk, Russian Federation)
koturova@petrsu.ru
TOKKO Natalia I.
PhD in Philology, Associate Professor of Chair of German and French at the Institute of Foreign Languages
Petrozavodsk State University
(Petrozavodsk, Russian Federation)
nitokko@gmail.com
Keywords:
corpus linguistics
learner corpus
corpus of student writings
language errors
German as foreign language (DaF)
PACT.
Abstract: in the digitalization era, the attention of foreign language teachers is increasingly turned to linguistic corpora, in particular, learner corpora. The corpora potential and importance in foreign language learning and teaching can hardly be overestimated. The aim of this paper is to present the possibilities of PACT (Petrozavodsk Annotated Corpus of Texts), a Corpus of Student Writings in a foreign language, for analyzing students' typical errors. The authors of the paper present dia-grams based on the corpus, showing the distribution of errors by grade. The graph of students' errors from 1st to 5th year gives a clear idea that by the end of the studies grammatical errors go into the background, but the number of stylistic, logical, discursive and lexical errors increases. The number of lexical, orthographic, punctuation and word order errors exceeds other classes, remaining high throughout the whole study period from the 1st to the 5th year. The reasons for this are largely due to interference with both the native Russian language and English as the first foreign language. The PACT corpus helps teachers in preventing learners' errors, and gives students the opportunity to work independently on their errors and to design an individual educational trajectory.
Paper submitted on: 07/28/2022; Accepted on: 11/02/2022; Published online on: 12/20/2022.

 

References

  1. Barymova N. French-language corpus of PACT student texts: achievements and prospects. In: Otrazheniya: yazyk i kul'tura v sinhronii i diahronii. Petrozavodsk, 2022. P. 120–123. (In Russ.)
  2. Vinogradova O. Working with language corpus in foreign language learning, teaching and use. In: Mezhkul'turnoe prostranstvo: lingvisticheskij i didakticheskij aspekty. 2021. Vol. 1. P. 20–29. (In Russ.)
  3. Kotiurova I. Part-of-speech tagging tools applied to a learner corpus. In: Pedagogicheskaya informatika. 2021. № 3. P. 81–89. (In Russ.)
  4. Kotiurova I. Problems by creating an error classifier for tagging a learner corpus in German. In: Mezhkul'turnoe prostranstvo: lingvisticheskij i didakticheskij aspekty. 2021. Vol. 2. P. 34–41. (In Russ.)
  5. Dräger J., Müller-Elselt R. Die digitale Bildungsrevolution: Der radikale Wandel des Lernens und wie wir ihn gestalten können. München, 2015.  P. 8.
  6. Plunian V. Why should modern linguistics be corpus linguistics? Transcript of the lecture [Electronic resource]. Electron. dan. URL: https://polit.ru/article/2009/10/23/corpus/ (date of access: 27.07.2022). (In Russ.)
  7. Tokko N. The importance of collocations in learning and teaching German as a foreign language [Electronic resource]. In: Gumanitarnye aspekty vysshego professional'nogo obrazovaniya. Makeevka, 2022. P. 61–66. Electron. dan. URL: http://donnasa.ru/docs/nik/nauchnye_konferencii/sbornik_statey_i_tezisov_dokladov_2022.pdf (In Russ.) (date of access: 27.07.2022).
  8. Barymova N. [et al.]. Part-Of-Speech Taggers Features In French Learner Texts [Electronic resource]. In: Proceedings of the FRUCT 29. 2021. № 2. P. 500–502. Electron. dan. URL: https://fruct.org/publications/acm29/files/zBar.pdf (date of access: 27.07.2022).
  9. Boulton A. Spreading the net: Empirical studies in data-driven learning [Electronic resource]. Online symposium «Incorporating Corpora in Teaching», Report. Mid-Sweden University. 2020. [Electronic resource]. Electron. dan. URL: https://hal.archives-ouvertes.fr/hal-02977549 (date of access: 27.07.2022).
  10. Dubova A., Proveja E. Datengeleitetes Lernen im studienbegleitenden Deutschunterricht am Beispiel des KoGlossAnsatzes. Zeitschrift für Interkulturellen Fremdsprachenunterricht 21. 2016 [Electronic resource]. Electron. dan. URL: https://zif.tujournals.ulb.tu-darmstadt.de/article/id/3050/(date of access: 27.07.2022).
  11. Lüdeling A. Was ist schwierig? – Eine korpusbasierte Analyse struktureller Lernschwierigkeiten im Deutschen als Fremdsprache [Electronic resource]. Electron. dan. URL: https://gepris.dfg.de/gepris/projekt/105286979/ergebnisse?context=projekt&task=showDetail&id=105286979&selectedSubTab=2& (date of access: 27.07.2022).

 


Displays: 662; Downloads: 165;

DOI: http://dx.doi.org/10.15393/j5.art.2022.8009